

at most 25 away

Remark: The potential limit 2 of
$$(Xn)$$
 does
NOT come up in the definition of Canchy seq
Example 1: $(Xn) := \left(\frac{1}{n}\right)^{0}$ is Cauchy.
Pf: Let 200 be fixed but arbitrary.
Choose HeiN st $H > \frac{2}{2}$.
Then, $\forall n, m \ge H$.
 $|Xn - Xm| = \left|\frac{1}{n} - \frac{1}{m}\right| \le \frac{1}{n} + \frac{1}{m}$
 $\le \frac{1}{H} + \frac{1}{H} = \frac{2}{H} < \varepsilon$.
Example 2: $(Xn) := (1 + (-1)^{n})$ is NOT Cauchy
Pf: Note that (Xn) is NOT Cauchy iff
 $\exists \ge 0 > 0$ st $\forall H \in \mathbb{N}$. $\exists n, m \ge H$ but
 $|Xn - Xm| \ge 50$

•

Xeven

Take $\varepsilon_0 = 1 > 0$. For any $H \in IN$ fixed. $\exists odd m > H$ st $|X_n - X_m| = |2 - 0| = 2 > 1$ $\exists even n > H$

Proof: "=>" (Easier direction)
Suppose (xn) is convergent, say
$$lim(xn) = x$$
.
Let $\varepsilon > 0$ be fixed but arbitrom
By $\varepsilon \cdot K def^2$ of limit. $\exists K = K(\frac{\varepsilon}{2}) \in IN$ st
 $|xn - x| < \frac{\varepsilon}{2} \quad \forall n \geqslant K$
Choose $H = K \in IN$, then $\forall n, m \geqslant H$,
 $|xn - x| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
So. (xn) is a Cauchy seq. by def^2 .

Idea: come up with a potential candidate for the limit using BWT and use "Cauchy" to prove that this is really the limit.

Claim 1 : (Xn) is bod

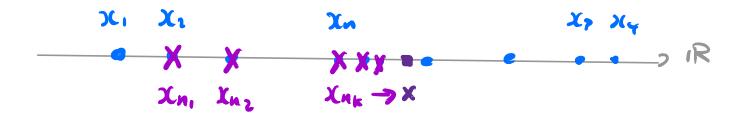
Pf: Since (x_n) is Cauchy, take $\varepsilon_0 = 1 > 0$, then $\exists H = H(1) \in IN$ st $\forall n, m > H$.

 $|X_n - X_m| < \frac{2}{5} = 1$

 $\begin{aligned} & \text{Fix } m = H, \text{ then by reverse triengle ineq.} \\ & \left| |x_n| - |x_H| | \leq |x_n - x_H| < 1 \quad \forall n \geqslant H \\ \Rightarrow \quad |x_n| \leq |x_H| + 1 \quad \forall n \geqslant H \\ & \text{Take } M := \max \left\{ |x_1|, \dots, |x_{H-1}|, |x_H| + 4 \right\} > 0. \end{aligned}$

Then, IXAIEM JAGIN, ie. (XA) bdd.__.

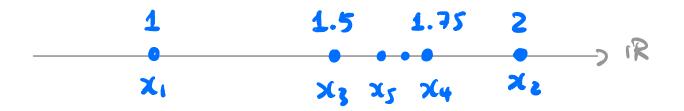
Apply Bolzeno-Weierstress Thm. I subseq (χ_{n_k}) of (χ_n) st $\lim_{k \to \infty} \chi_{n_k} = \chi$. Claim 2 : $\lim (X_n) = X$.



Pf: Since (Xn) is Cauchy. let 2 so be fixed but arbitrary, then $\exists H = H(\frac{\epsilon}{2}) \in N$ st $|X_n - X_m| < \frac{\varepsilon}{2} \quad \forall n, m > H$ On the other hand, since lim Xnk = X. $\exists \mathbf{k} = \mathbf{K}\left(\frac{\mathbf{\xi}}{2}\right) \in \mathbb{N}$ st $|\chi_{n_k} - \chi| < \frac{\varepsilon}{2} \quad \forall k > k$ Fix a k ? K and Mk ? H. Then In? H. $|x_n - x| \leq |x_n - x_{n_k}| + |x_{n_k} - x|$ $< \frac{2}{3} + \frac{2}{7} = 2$ So, (Xn) is converging to X.

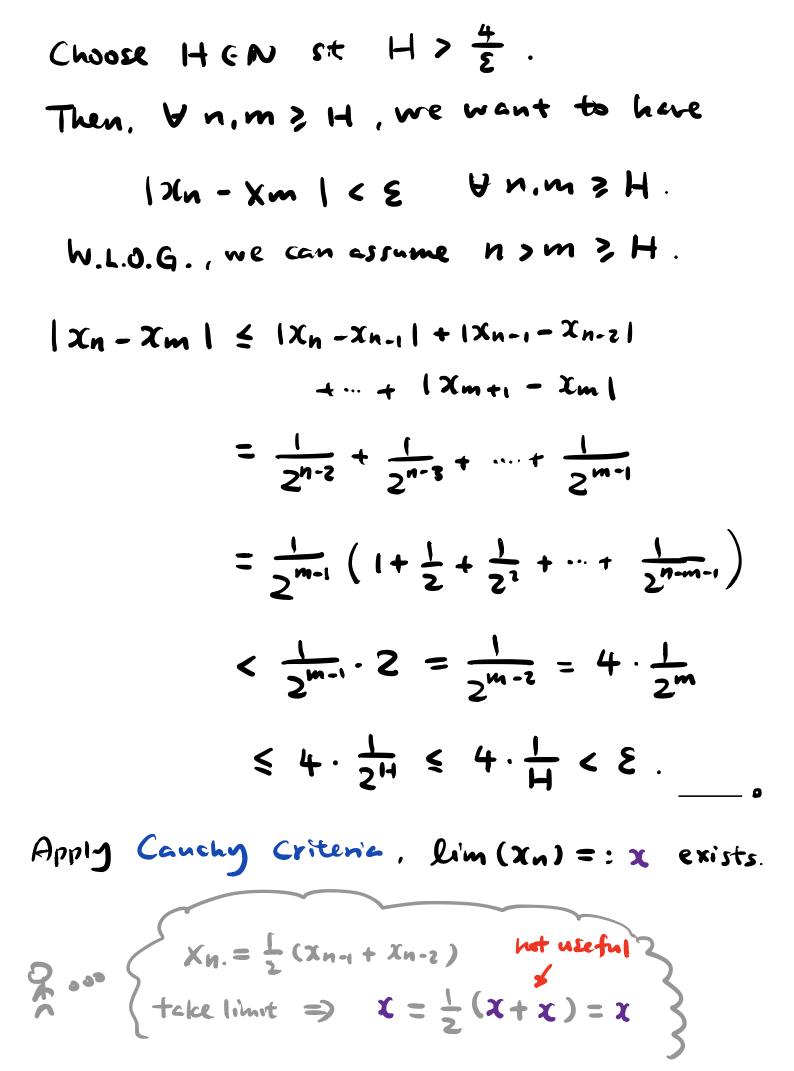
Example: Consider the seq. (Xn) defined inductively by $X_1 := 1$, $X_2 := 2$, and $X_n := \frac{1}{2}(X_{n-1} + X_{n-2})$ $\forall n \ge 3$.

Show that (Xn) is convergent and find its limit.



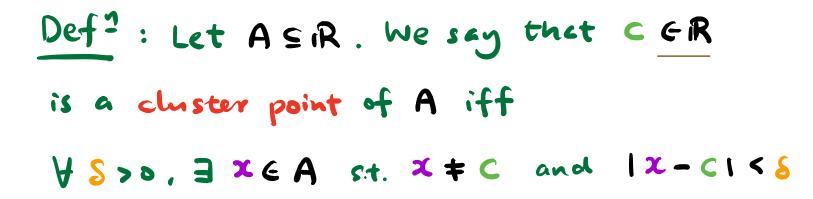
Note: (xn) is bodd but not monotone So, we need to use Cauchy criteria instead. Pf: Observe that we have :

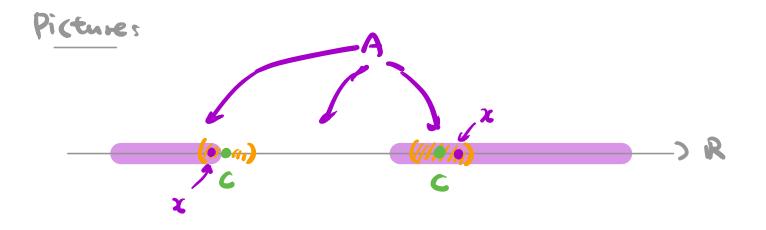
1 ≤ Xn ≤ 2 ∀n ∈ IN IXn+1 - Xn | = 1/2ⁿ⁻¹, ∀n ∈ IN Claim: (Xn) is Canchy. (=) Convergent)
Pf: Let E>D be fixed but arbitrary.



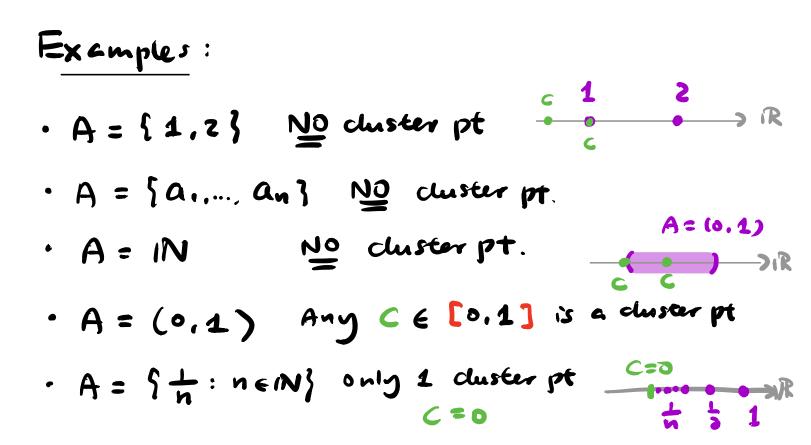
Even though
$$(x_n)$$
 is Not monotone, the odd
subseq is. Consider the subseq $(X_{2k-1})_{K \in \mathbb{N}}$
Note: $\lim_{k \to \infty} (X_{2k-1}) = X$
 $X_{2k-1} = 1 + \frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^5} + \dots + \frac{1}{2^{2k-3}}$
 $\lim_{k \to \infty} 1 + \frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^5} + \dots + \frac{1}{2^{2k-3}}$
 $\lim_{k \to \infty} 1 + \frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^5} + \dots + \frac{1}{2^{2k-3}}$
 $\lim_{k \to \infty} 1 + \frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^5} + \dots + \frac{1}{2^{2k-3}}$
 $\lim_{k \to \infty} 1 + \frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^5} + \dots + \frac{1}{2^{2k-3}}$
 $\lim_{k \to \infty} 1 + \frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^5} + \dots + \frac{1}{2^{2k-3}}$
Take $k \to \infty$, $\chi = \lim_{k \to \infty} X_{2k-1} = 1 + \frac{1}{2^{2k-3}}$
 $\int \frac{1}{2^{2k-3}}$
 $\int \frac{1}{2^{2k-3}} + \frac{1}$

so fix) is detined





Remark: The cluster pt CGIR may or may not belong to A.



Prop: CER is a cluster pt. of A (an) in A st. an ≠ C ∀neiv and lim (an) = c Pf: Exercise (Hint: take S=+).

____ 0